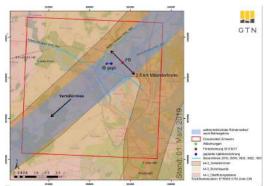
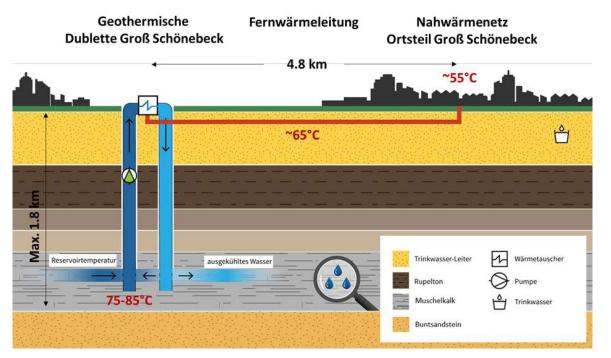
Erschließung des Potenzials tiefer Geothermie für die Heizwärme

ROADMAP TIEFE GEOTHERMIE FÜR DEUTSCHLAND


Handlungsempfehlungen für Politik, Wirtschaft und Wissenschaft für eine erfolgreiche Wärmewende



Erfolgreiches kommerzielles Vorhaben in Schwerin


Geoenergie Projekte Berlin & Brandenburg

Sippel et al., 2013

Konzept Schorfheide – Neue Quellen und Systemintegration für das Land

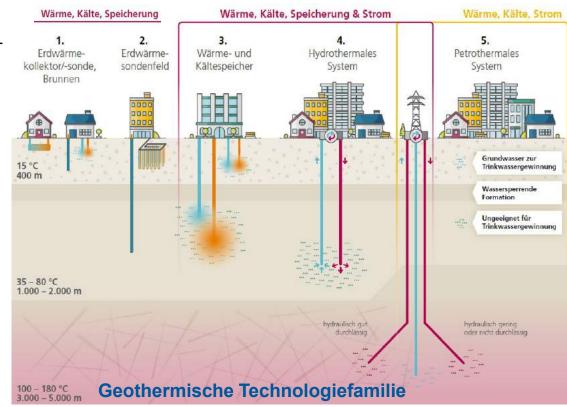
Schematische Darstellung der mitteltiefen geothermischen Dublette am Forschungsstandort Groß Schönebeck (links), der Fernwärmeleitung zum Ortsteil Groß Schönebeck (Mitte) und des Nahwärmenetzes im Ortsteil Groß Schönebeck.

REGENERATIVER NETZAUSBAU WÄRME CAMPUS BERLIN-BUCH

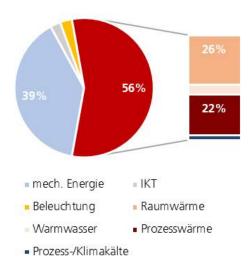
Machbarkeitsstudie mittels Co-Simulationsmethodik als Planungswerkzeug zur Tiefen Geothermie:

54 Gebäude, 5 Eigentümer: Heizwärmebedarf Campus: ca. 21 GWh/a aus 20 MW Anschlussleistung, bisher gedeckt aus konventioneller Fernwärme

Wie lassen sich 100% Wärme aus nicht fossilen Rohstoffen erreichen?



Unabhängigkeit stärken


Dezentralisierung fördert erneuerbare Energiesysteme Mit Geothermie die Zukunft selbst sichern Vulnerabilität der Energieversorgung reduzieren Partizipation der BürgerInnen steigern Gesellschaftliches Selbstbewusstsein stärken

Kernaussage zum Ausbauziel 300 TWh_{th}/a: möglich und notwendig

- Investitionen in Schlüsseltechnologien der geothermischen Technologiefamilie
- Unabhängigkeit von Erdgas und
 Vermeidung von CO₂ als Leitgedanken
- Beschleunigte Genehmigungsverfahren
- Ausweisung von Vorzugsflächen
- Instrumente zur Fündigkeitsrisikoreduzierung
- Aktivierung des Wertschöpfungs- und Arbeitsmarktpotenzials
- 300 TWh_{th}/a ≈ 70 GW_{th} Leistung

Energiewirtschaftliche Einordnung

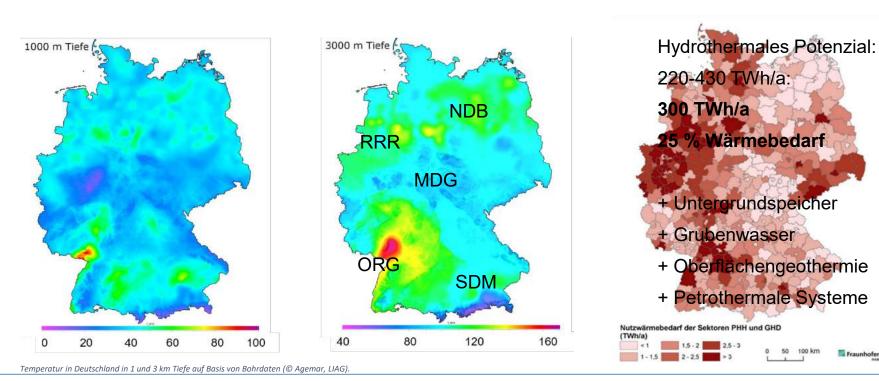
Status Quo (2019)

Gesamt 1.400 TWh/a
Raumwärme 658 TWh/a
Prozesswärme 541 TWh/a
Warmwasser 130 TWh/a
Kälte 63 TWh/a

Kommunale Wärmewende

- Raumwärme 658 TWh/a (> 2.100 h/a)
- Warmwasser 130 TWh/a (8.600 h/a)

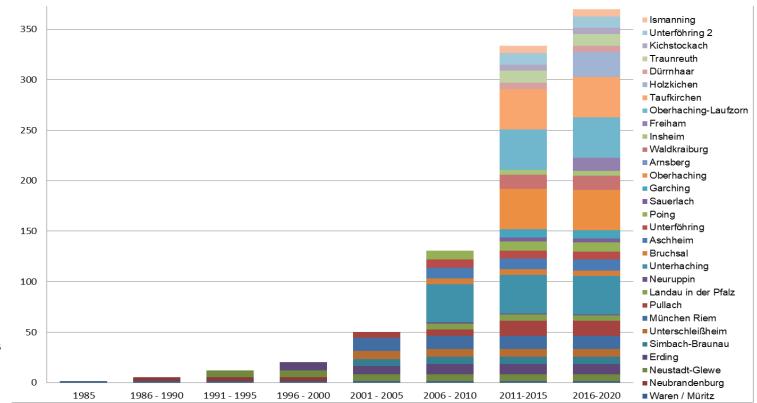
Kommunaler Bedarf: 788 TWh/a


Industrielle Wärmewende

- Prozesswärme 541 TWh/a (8.600 h/a)
- Kälte 63 TWh/a (8.600 h/a)

Industrieller Bedarf: 604 TWh/a

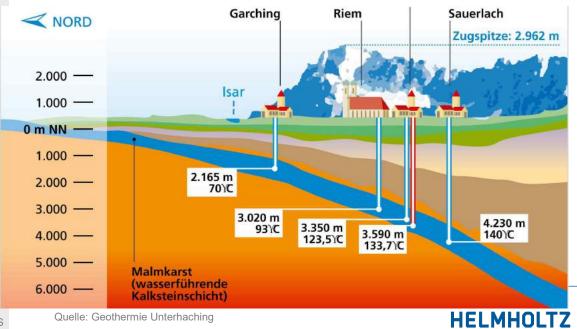
Regionale Potenziale und Wärmebedarfe

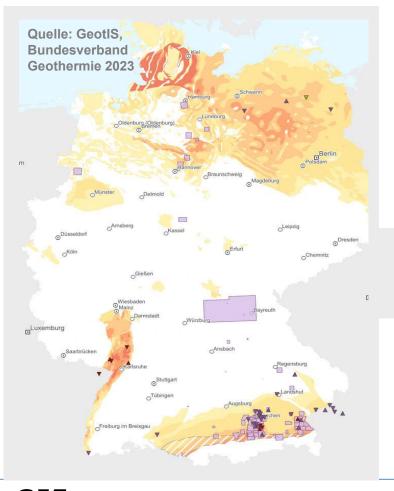


Fraunhofer

Kapazität geothermischer Heizwerke in Deutschland in MW_{th}

Huenges mit Daten des Bundesverbandes Geothermie e.V., 2021

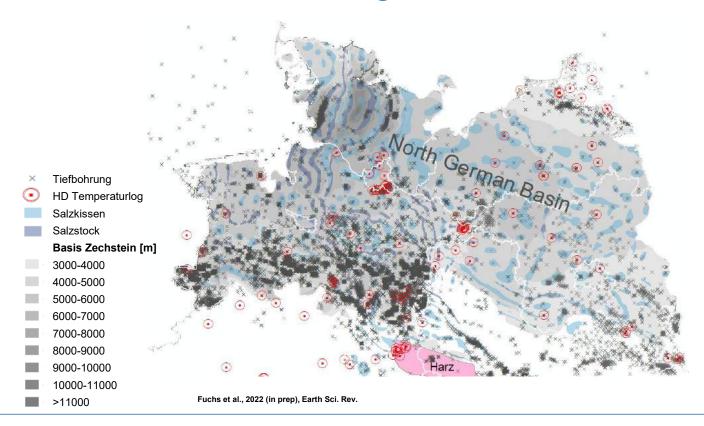




Oldenburg (Oldenburg) Magdeburg OAmsberg Leipzig ⊙^{Düsseldorf} ⊙^{Dresden} Chemnitz Wiesbaden Darmstadt Luxemburg CAnsbach Saarbrücken Freiburg im Breisgau Quelle: GeotIS

Pilotfall: Bayrisches Alpenvorland

- Karstgestein
- Keine Salzstrukturen


Anlagen im kommerziellen Betrieb:	5 – 24	
Im Bau:	1 – 3	
Nicht realisiert:	2 – 4	
In Planung:	6 – 6	
Zielhorizonte:	7 – 1	

Geothermische Erschließung Norddeutsches Becken vs. Alpenvorlandsmolasse

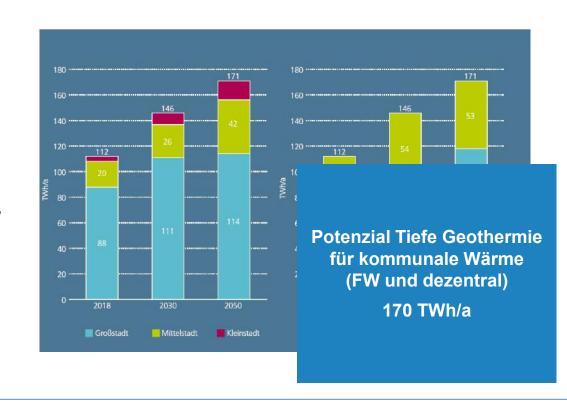
- Relativ homogener Malmkarst (Karbonat) mit wenig Faziesvariabilität
- Komplex: Lithostratigraphie, Halokinetik,
 Hydrochemie, Petrophysik, Temperatur

Norddeutsches Becken: ein geothermischer Gunstraum

Technische Potenziale einsetzen Vorhandene Schlüsseltechnologien optimieren Anwendung deutlich verstärken Maßstäbe verschieben Demonstrationsvorhaben reduzieren die Distanz und erhöhen die Akzeptanz Forschung setzt Beispiele und Impulse für lokale Wirtschaftsentwicklung

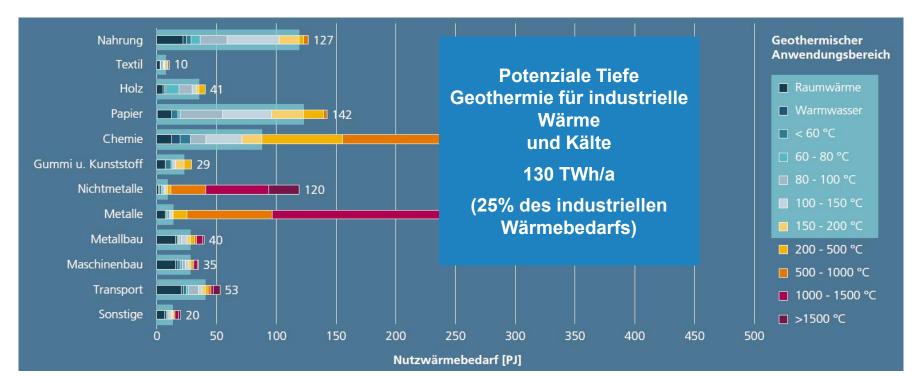
Fernwärme in Industrie und Kommunen

Kommunale Strukturen in Deutschland


60 Mio EW in urbanen Strukturen

80 Großstädte > 100.000 EW

• 641 Mittelstädte 20.000-100.000 EW


1391 Kleinstädte < 20.000 EW

20 Mio EW im ländlichen Raum

Industrielle Prozesswärme: Großer Anteil Geothermie erwartbar

Quelle: Wolf, S. (2016)

Startpunkt der Tiefen Geothermie

Marktreife Technologie

42 Anlagen werden mit 359 MW installierter Wärmeleistung und

45 MW elektrischer Leistung (2020) sicher betrieben.

Wärme- und Strom-Co-Generation ist oft eine Option.

Wettbewerbsfähige Erzeugung (Projektion Winter 2022/2023)

Herstellungskosten:

Abhängig von der Bohrungstiefe und -länge 2,5 – 2,8 Mio. EUR / MW installierter thermischer Leistung

Kostenverteilung:

60 % kapitalgebundenen

10 % bedarfsgebunden

30 % betriebsgebunden

Erzeugungskosten: 30 - 40 EUR / MWh

Sektor	für	Aktivität / Indikator	2025	2030	2040-
Markt Ir N m p	Energie-	Transformation Fernwärmenetze	Geschäftsmodelle ent- wickelt; Transforma- tionsstudien berück- sichtigen TGT, Ausbau Niedertemperaturnetze	TGT speist in 20 % der Fern- wärmenetze ein	Temperatur- absenkung auf 60 bis 80 °C von 30 % in den Bestandsnetzen
	wirtschaft	Kommunale Wärme	Hybride Systeme (Quellen komplementärer Temperatu- ren, Nutzung netzbezogener Quellen (Gas))	Geothermie (TGT + ONG) deckt 20 bis 30 % des kommunalen Wärmebedarfs	30–40 % Geothermie; Kopplung mit Stromsektor
	Industrie und Nahrungs- mittel- produktion	Industrieprozesse < 200°C/ Agrarindustrie < 50°C	Modellhafte Einkopplung von TGT in Industrieprozesse	0,5 bis 2 GW installierte Leistung (z.B. jeweils in Papier, Nahrungsmittel, Chemie etc.)	10 bis 14 GW Erzeugungs- kapazität für Prozesswärme und ca. 1 GW für Kälte aus TG installiert
	Bau- und Wohnungs- wirtschaft	Wärmebereitstellung für Quartiere, Neubau und Gebäudesanierung / Bau und Transformation NT-Wärmenetze auf TGT	10 % Bestand auf TGT umgestellt; 30% im Neubau	20 % THG-Reduktion durch TGT	30 bis 40 % des Gebäudebestan- des geothermisc klimatisiert
	Finanz- wirtschaft	Finanzierung TGT über mehrere Investitionsphasen	RMF		

Sektor	Roadmap für	Aktivität / Indikator	2025	2030	2040+
	Ausbauziele (TWh / GW)	Jahresarbeit / installierte Leis- tung für tiefe geothermische Wärmeerzeugung (TGT)		100 TWh / 24 GW	300 TWh / 72 GW
	Verwaltung	Genehmigungspraxis verschlanken, Aufbau Fach- personal der Behörden	Digitalisierter Zugang zu Geodaten; Ausweisung von Vorzugsflächen Genehmigungspraxis mit Konzentrationswirkung	Vereinfachte Genehmigung, transkommunale Wärmenetze	
Politik	Marktanreize	Einführung eines Instruments zur Minimierung von Fündigkeitsrisiken (RMF)	RMF in Operation Fonds / Versicherung Bohrprogramm Erhöhung des jährlichen BEW-Fördervolumens	Kohleausstieg, Bevorzugung erneuer- bare Wärmequellen (50% Kommunale Wärme)	
	Regulierung	Reform der berg- und wasserrechtlichen Genehmigung / Einspeisetarife / WärmelieferVO / Netzdienlichkeit	CO ₂ -Vermeidungskosten als Leitwerkzeug der Regulation, Rechtsrahmen zum Aufbau und der dauerhaften Nutzung von Untergrundspeichern	Förderprogramm Bürgerenergie- modelle	Transporttrassen für Wärme von den Peripherien in die Innenstädte

Skalierung auf Industriemaßstab

Schaffung von Rahmenbedingungen

Der Ausbau der installierten Kapazitäten von 400 MW auf 70 GW erfordert industrielle Planungsund Fertigungsprozesse:

100-fache Vergrößerung der Kapazität von heute!

Die Schaffung geeigneter gesellschaftlicher, rechtlicher und politischer Rahmenbedingungen durch vernetzte Aktivitäten aller Akteure für sichere Investitionsentscheidungen ist notwendig:

2,0 - 2,5 Mrd EUR / GW

Kapazität und Wertschöpfung

Strukturwandel

Arbeitsplätze Branche: ca. 20.000 (2016) Investitionen: ca. 1,3 Mrd EUR (2017)

Zum Kapazitätenaufbau wird Industriekompetenz aus dem Strukturwandel der Energie-, Bergbau-, Kohlenwasserstoff-Branchen benötigt

Wertschöpfung/Exportfähigkeit der Technologie

5 – 10 Vollzeitäquivalent-Stellen je MW installier-te Leistung (FuE, Planung, Produktion, Anlagenbau, Betrieb)

Unabhängigkeit von Energieimporten

71 % heutiges Energieaufkommen durch Importe

2018: 63 Mrd. Euro bzw. 1,9 % des BIP

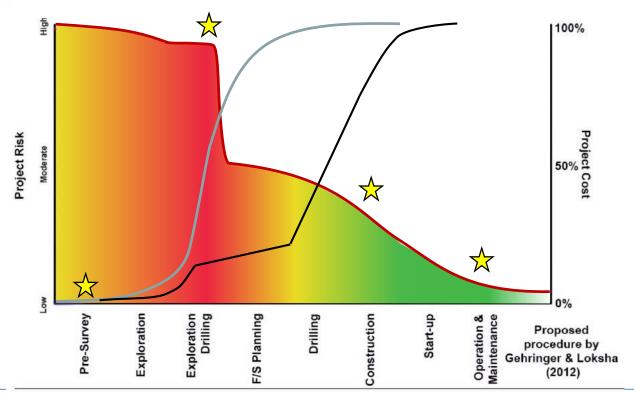
Sektor	für	Aktivität / Indikator	2025	2030	2040+
Kapazität & Akzeptanz	Technologie	Untertage / Übertage	Aufbau von Bohr- und Netzkapazität	> 2.000 Dublet- ten à 10 MWth)	7.200 bis 10.000 Dubletten
	Personal	Bereitstellung von Personal für FuE / Technologie / Produktion / Bau / Betrieb	ca. 50.000 Personen werden technisch & akademisch ausgebildet	Bildungsprogram- me für mehr als 10.000 Personen pro Jahr etabliert	mehrere 100.000 Arbeitsplätze
	Bildungs- programme	Curricula für Handwerks-, Technik- und akademische Berufe	Anpassung Aus- und Weiterbildungsprogramme		
	Akzeptanz	Management standortspe- zifischer Faktoren (Kom- munikation, Akzeptanz, Finanzen, Betriebssicherheit, Infrastrukturen)	Kommunale Programme zur Förderung gesellschaft- licher Partizipation und positives Marketing	Bürgerenergie- modelle für geo- thermische Wärme auf kommunaler Ebene etabliert	

Forschung fördert positives Denken

Apathie bestehender Strukturen überwinden Gegenläufige Einflüsse beherrschen lernen Green Washing entlarven Meinungsführer mobilisieren Impulsgebende Initiativen einleiten Glaubwürdigkeit einfordern Visionäre integrieren

www.fotocommunity.de

Sektor	Roadmap für	Aktivität / Indikator	2025	2030	2040+
Innovation & Technologie	Erkundung	Explorationstechnik / Geophysik / Datenmanagement	Integrierte modellbasierte Planungsinstrumente, Erkundungsprogramm Reser- voire in Ballungsräumen	TGT hydrothermal flächendeckend erkundet	Erkundung petrothermaler Systeme
	Erschließung	Innovative Bohr- und Reservoirtechnologien	»Stadt-Bohrsysteme (100 bis 150 t)«, Bohrprogramm, Monitorsysteme, 3D-Abbildung des nutzbaren Untergrundes	Kostenreduktion durch Innovationen in Bohrungstechnologien (standardisierte multilaterale Bohrungen), Reservoir- engineering (multi-stage Stimulation)	
		Monitoring, Betrieb Unter- tage / Übertage	Automatisierung und Digitalisierung	Wettbewer- bermarkt für Bohrlochpumpen etabliert	
	Erzeugung & Speicherung	Systemlösungen durch Sektorenkopplung und Untergrundspeicher	integrierte, digitalisierte Betreiberlösungen für urbane Räume	20 Reallabore in Regionen mit hohem Wärme- bedarf in Betrieb	
		Großwärmepumpen für kommunale und industrielle Bedarfe	Protoypenentwicklung 180 bis 200 °C Wärmepumpen	Industrielle Fertigung von hT-Wärmepumpen 10 bis 50 MW	



Wie liegt das Risiko in der Projektentwicklung?

Vergleich Kostenentwicklung während des Verlaufs geothermischer Projekte (Gehringer & Loksha, 2012; in schwarz) im Vergleich zu aktuellen Erfahrung in Deutschland (lila Kurve) im Vergleich zur Entwicklung der Projektrisiken (rote Kurve).

Sass et al. (2017)

Empfehlung der Einrichtungen der Helmholtz-Gemeinschaft und der Fraunhofer-Gesellschaft

Marktpotenzial <u>hydrothermaler Ressourcen</u> für Fernwärme, Industrie, kommunale Wärme, Wohnungswirtschaft beträgt **300 TWh/a** bzw. **70 GW** (> 25 % Gesamtwärmebedarf)

- + Oberflächengeothermie + Untergrundspeicher / Grubenwasser + Petrothermale Systeme
- 1. Politik sollte klare Ausbauziele formulieren und diese regulatorisch untersetzen.
- 2. Kurzfristig benötigt werden Instrumente zur Risikominderung; insbesondere finanztechnische Werkzeuge, geophysikalische Untersuchungen in Ballungsräumen und ein Explorationsbohrprogramm.
- 3. Förderung von 10 Jahres-Schlüsseltechnologien; z.B. Bohr- / Reservoirverfahren (Multilaterale / EGS), Bohrlochpumpen, Hochtemperatur-Wärmepumpen, Entwicklung von Großwärmespeichern und die sektorübergreifende Systemintegration.
- 4. Aktivierung des hohen Wertschöpfungs- und Arbeitsmarktpotenzials von 5-10 Personen je MW installierter Leistung durch bildungspolitische und wirtschaftsfördernde Maßnahmen.
- 5. Breite Öffentlichkeitsarbeit mit proaktiver politischer Begleitung; Kommunen in den Mittelpunkt der Kommunikation mit partizipativen Möglichkeiten.

